
1

Sensitive protein sequence searching

for the analysis of massive data sets

Martin Steinegger

1,2
and Johannes Söding

1,⇤
1Quantitative and Computational Biology group,
Max-Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
2Department for Bioinformatics and Computational Biology,
Technische Universität München, 85748 Garching, Germany

Sequencing costs have dropped much faster than

Moore’s law in the past decade, and sensitive

sequence searching has become the main bottleneck

in the analysis of large (meta)genomic datasets.

While previous methods sacrificed sensitivity for5

speed gains, the parallelized, open-source software

MMseqs2 overcomes this trade-o↵: In three-iteration

profile searches it reaches 50% higher sensitivity than

BLAST at 83-fold speed and the same sensitivity as

PSI-BLAST at 270 times its speed. MMseqs210

therefore o↵ers great potential to increase the

fraction of annotatable (meta)genomic sequences.

Sequencing costs have decreased 104-fold since 2007, outpacing
the drop in computing costs by three orders of magnitude. As
a result, many large-scale projects each producing terabytes15

of sequences are being performed, such as the genome 10K
project [11] and metagenomic and metatranscriptomic studies
with applications in medical, biotechnological, microbiological,
and agricultural research [1, 3, 8, 13, 25].
A central step in the computational analysis is the anno-20

tation of open reading frames (ORFs) by searching for sim-
ilar, annotated proteins from which to infer their functions.
In metagenomics, computational costs now dominate sequenc-
ing costs [5, 22, 27] and protein searches typically consume
> 90% of computational resources [27], even though the gold25

standard BLAST tool [2] has mostly been replaced by faster
and less sensitive search tools such as BLAT[17], UBLAST[6],
LAST[18], RAPSearch2[30], and DIAMOND[4].
Like BLAST, most fast methods follow a seed-and-extend

approach: a fast seed stage searches for short-word (”k-mer”)30

matches which are then extended to a full, gapped alignment.
In contrast to BLAST and SWORD [28], most fast methods in-
dex the database k-mers instead of the query sequences, using
hashes or su�x arrays, and a few index both to streamline ran-
dom memory access during the identification of k-mer matches35

[4, 12]. To increase the seeds’ sensitivity, some methods allow
for one or two mismatched positions [12, 17], others employ re-
duced alphabets [4, 12, 26, 30]. Many use spaced k-mer seeds
to avoid strongly overlapping, multiple matches [4, 12].
While being tens to thousands of times faster than BLAST,40

none of the faster methods even approaches its sensitivity. Be-
cause many species found in metagenomics and metatranscrip-
tomics studies are not closely related to any organism with
a well-annotated genome, the fraction of unannotatable se-
quences is often as high as 65% to 90% [1, 14], and the widen-45

ing gap between sequencing and computational costs quickly
aggravates this problem.

To address this challenge, we developed MM-
seqs2 (many against many sequence searching 2)
(https://github.com/soedinglab/mmseqs2). MMseqs2 builds50

on our software MMseqs [10], designed for fast sequence
clustering and searching of globally alignable sequences (see
Supplemental Table S1 for a list of di↵erences). MMseqs2
shows a drastically improved sensitivity and speed in sequence
searching, enabled by a novel k-mer matching algorithm55

designed to find local sequence similarities, a gapless align-
ment stage, better suppression of false positive matches, and
better scalability across multiple CPU cores and servers.
Also, dozens of utilities have been added to the MMseqs2
toolset. Most importantly, MMseqs2 is the first fast method60

to support iterative sequence profile searches and to reach
sensitivities much above BLAST.
MMseqs2 searching proceeds in three stages (Fig. 1a): a

k-mer match stage, a vectorized ungapped alignment stage,
and accurate, stripe-vectorized [7, 29] Smith-Waterman align-65

ment. All stages correct scores for locally biased amino acid
composition. Final results are ranked by E-value.
The crucial first stage (Fig. 1b) finds all target sequences

that have two consecutive k-mer matches on the same diagonal.
The diagonal of a k-mer match is the positional o↵set i� j70

between the current position in the query i and the position
j of the similar k-mer in the target sequence (”pos” in green
frame). If the current k-mer match in sequence target_ID

occurs on the same diagonal i�j as the previous one stored in
diagonal_prev[target_ID], we found a double k-mer match.75

These double matches are passed on to the next stage, which
computes on these diagonals the ungapped alignment score.
The e�ciency of the first stage is owed to the following:

(1) Like BLAST and MMseqs, we find similar-k-mer matches
with a substitution matrix similarity score above a specifiable80

threshold. In contrast to BLAST, MMseqs2 uses a large word
size k=7, resulting in an optimal sensitivity-specificity trade-
o↵. To maintain high sensitivity of the k-mer matches, we
generate between 600 and 55 000 similar k-mers (Fig. 1b, or-
ange frame) per query k-mer on average, depending on the85

score threshold for the sensitivity setting (faster, fast, default,
sensitive). This consumes less than 2% CPU time. (2) Consec-
utive k-mer matches on the same diagonal have an even more
favourable sensitivity-specificity trade-o↵ because consecutive
k-mer matches are unlikely to occur on the same diagonal by90

chance, whereas for homologous sequences they will lie on the
same diagonal if no alignment insertion or deletion occurred
between them. A similar criterion is used in the earlier, two-hit
3-mer seed strategy of BLAST [2]. (A new version reverts to a
single-hit strategy but uses 6-mers on a reduced size-15 alpha-95

bet instead of 3-mers.[23]) (3) Importantly, k-mer matches are
very e�ciently processed in the innermost loop 4 within only
a few CPU clock cycles per k-mer match, by eliminating the
random memory access for storing the diagonal of the current
match (last line in magenta box of Fig. 1b, Supplementary100

Fig. S1). (4) Since all cores share access to main memory,
non-linear memory access is usually the bottleneck for e�cient
multi-core parallelization. By avoiding random access in loop
4, run times scale almost inversely with the number of cores
(Supplementary Fig. S2).105

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/079681doi: bioRxiv preprint first posted online Oct. 7, 2016;

http://dx.doi.org/10.1101/079681
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

Figure 1. MMseqs2 searching
in a nutshell. (a) Three in-
creasingly sensitive search stages
find similar sequences in the
target database. (b) The k-
mer match stage is key to
the high speed and sensitivity.
It detects consecutive similar-k-
mer matches that occur on the
same diagonal (positional o↵set)
between query and target se-
quence. The pre-computed in-
dex table for the target database
(blue frame) contains for each
possible k-mer the list of the
target sequences and positions
where the k-mer occurs. Query
sequences/profiles are processed
one by one (loop 1). For each
overlapping, spaced query k-mer
(loop 2), a list of all simi-
lar k-mers is generated (orange
frame). The similarity threshold
determines the list length and
sets the trade-o↵ between speed
and sensitivity. For each similar
k-mer (loop 3) we look up the list
of sequences and positions where
it occurs (green frame). In loop
4 we detect consecutive double
matches on the same diagonals
(magenta and black frames).

MMseqs2 is parallelized on three levels: First, time-critical
parts are optimized using AVX2/SSE4.1 vector instructions.
Second, queries can be distributed to multiple cores using
OpenMP. Third, the target database can be split into chunks
and distributed to multiple servers using message-passing in-110

terface, and the results are automatically merged. This also
permits processing huge datasets with limited main memory.
Fast search tools have commonly been benchmarked with

short query sequences translated from sequencing reads [4, 12,
30]. For such short sequences to match with statistical sig-115

nificance requires high similarities. For example significant
matches (E 10�3) of 50 amino acids length in a search
through the UniProt database have an expected sequence iden-
tity of ⇠45%, making significant matches easy to detect.
Such benchmarks are not suited to compare tools as sensitive120

as (PSI-)BLAST and MMseqs2. Also, since disordered, low-
complexity and repeat regions are known to cause false-positive
matches, particularly in iterative profile searches, we devised
a benchmark with full-length query sequences. We selected
a subset of 7616 sequences of the SCOP database of struc-125

tural domains [19] with 25% maximal pairwise sequence iden-
tity. As query sequences for our benchmark, we chose the 6370
UniRef50 sequences that yielded the best E-values in a search
with the Smith-Waterman alignment tool SWIPE [21]. The
benchmark database was built from two parts: all UniRef50130

sequences that obtained a match to a SCOP sequence with
SWIPE or HHblits [20] were annotated by the matched SCOP

domain family. The unmatched parts were scrambled in a way
that conserved the local amino acid composition. To obtain
a large database (30.4 million sequences) with a realistic rep-135

resentation of low complexity and repeat regions, we added
reversed UniProt sequences [16]. We used the following defini-
tion of true and false positive matches [24]: true positives have
annotated SCOP domains from the same SCOP family, false
matches have a SCOP domain from a di↵erent fold or match140

a reversed sequence, all other cases are ignored.
Some search tools are speed-optimized not only for large

target sets but also for large query sets. For the run time mea-
surements we therefore duplicated the query set 100 times,
resulting in 637 000 query sequences. All searches were per-145

formed on a server with 2⇥8 cores and 128 GB main memory.
Figure 2a shows the cumulative distribution of search sen-

sitivities for the 6 370 queries. Sensitivity of a single search
is measured by the area under the curve (AUC) before the
first false positive match, i.e., the fraction of true positive150

matches found with better E-value than the first false positive
match. MMseqs2 in sensitive mode achieves a similar sensi-
tivity as BLAST but is 36 times faster. MMseqs2 in default
mode is faster and considerably more sensitive than UBLAST,
RAPsearch2, and SWORD. Only DIAMOND achieves a sim-155

ilar speed-sensitivity trade-o↵, all other tools are clearly less
powerful (Fig. 2b). MMseqs fared remarkably well in this
setting even though it had been designed to detect globally
alignable sequences. Similar results were obtained with single-

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/079681doi: bioRxiv preprint first posted online Oct. 7, 2016;

http://dx.doi.org/10.1101/079681
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

Figure 2. MMseqs2 pushes out the boundaries of sensitivity-speed trade-o↵. a Cumulative distribution of Area under the curve
(AUC) sensitivity for all 6370 query sequences. Higher curves signify higher sensitivity. Legend: speed-up factors relative to BLAST. b
Average AUC sensitivity versus speed-up factor relative to BLAST. White numbers: search iterations. c Same analysis as A, for iterative
profile searches. d False discovery rates for sequence and profile searches (top: colors as in a, bottom: colors as in c).

domain queries (Supplementary Fig. S3).160

Interestingly, despite their heuristic prefilters, MMseqs2 and
BLAST are as sensitive as SWIPE, an accurate, vectorized
implementation of Smith-Waterman alignment. The reason
is that MMseqs2 and BLAST correct the scores for locally
biased amino acid composition, which helps suppress matches165

between locally biased, non-homologous segments (Fig. 2d,

Supplementary Fig. S4). This also shows that MMseqs2
and BLAST approach the maximum possible sensitivity.
There is no such ceiling for profile searches. We therefore ex-

tended MMseqs2 for iterative profile searching and compared170

it to PSI-BLAST (Fig. 2b). We searched with each of the
6 370 query sequences two to four iterations through the target
database with default sensitivity. The comparison to BLAST
(grey, dotted) demonstrates the considerable sensitivity gained
through profiles. But MMseqs2 is even more sensitive than175

PSI-BLAST despite being 270 times faster. This is due to
its e�cient correction of locally biased amino acid composi-
tion that also leads to lower false discovery rates (Fig. 2d,

Supplementary Fig. S5) and to a simple, e↵ective measure
to reduce homologous overextension of alignments [9] (online180

methods). As a result, we observe gains in sensitivity even for
seven iterations (Supplementary Figs. S6).

As an example use case, we tested how much MMseqs2
would help to increase the number of annotated proteins in
the Ocean Microbiome Reference Gene Catalog (OM-RGC)185

[25]. The speed and quality bottleneck is to find for each OM-
RGC sequence homologous clusters in the eggNOGv3 [15] and
KEGG databases. The BLAST search through eggNOGv3
with E-value cuto↵ 0.01 produced matches for 26 821 391
(67%) of the 40 154 822 OM-RGC genes [25]. We replaced190

the BLAST search with three MMseqs2 searches of increasing
sensitivity (Supplementary Fig. S7). We chose an E-value
cuto↵ of 0.1 that corresponds to the same false discovery rate
as E = 0.01 in BLAST (Fig. 2d). The first MMseqs2 search
in fast mode detected 23 818 024(59.3%) matches in eggNOG.195

The sequences without matches were searched with default
sensitivity setting and 2 855 786(17.5%) had a match. The last
search in sensitive search mode produced 1 138 484(8.3%) se-
quences with matches. In total we obtained at least one match
for 27 812 294 (69%) sequences in OM-RGC. In only 1 520 CPU200

hours we could thus find more matches than the 100⇥ slower
BLAST searches (162 952 CPU hours) that were performed in
the original study [25].
Next we sought to annotate the remaining 12 342 528 se-

quences using profile searches. We merged the Uniprot205

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/079681doi: bioRxiv preprint first posted online Oct. 7, 2016;

http://dx.doi.org/10.1101/079681
http://creativecommons.org/licenses/by-nc-nd/4.0/

4

database with the OM-RGC sequences and clustered this set
with MMseqs2 using a 50% sequence identity cut-o↵. We
built a sequence profile for each remaining OM-RGC se-
quence by searching through this clustered database and ac-
cepting all matches with E-values below 10�3. The result-210

ing sequence profiles were searched again through eggNOGv3,
and 3 530 172(28.3%) profiles obtained at least one significant
match with E < 0.1. This increased the number of OM-RGC
sequences with matches to eggNOGv3 clusters to 31 342 466
(78%) with an additional CPU time of 900 hours. In sum-215

mary, in the original study BLAST was able to match 67% of
the OM-RGC sequences to an eggNOG cluster [25], whereas
MMseqs2 matched 78% with only 1.5% of the CPU time.
For protein sequence fragments translated directly from

short reads, highly sensitive search tools are unnecessary, as220

sensitivity is fundamentally limited by the sequence length.
However, the trend to longer reads, longer metagenomic con-
tigs, and growing popularity of third generation sequenc-
ing technologies acutely intensifies the need for sensitive
search tools to raise the fraction of annotatable ORFs in225

(meta)genomic datasets. The MMseqs2 software suite ad-
dresses this need and also o↵ers various workflows to cluster
even huge sequence datasets. We are now developing an algo-

rithm for iterative profile-profile searching to further improve
sensitivity at high speeds [20].230

In summary, MMseqs2 closes the cost and performance gap
between sequencing and computational analysis of protein se-
quences. Its sizeable gains in speed and sensitivity should open
up new possibilities for analysing large data sets or even the en-
tire genomic and metagenomic protein sequence space at once.235

ACKNOWLEDGMENTS

We thank Milot Mirdita, Lars van den Driesch and Clovis
Galiez for contributing utilities and workflows. This work was
supported by the European Research Council’s Horizon 2020240

Framework Programme for Research and Innovation (“Virus-
X”, project no. 685778) and by the German Federal Ministry
for Education and Research (BMBF) [grants e:AtheroSysMed
01ZX1313D, SysCore 0316176A].

AUTHOR CONTRIBUTIONS245

M.S. developed the software and performed the data anal-
ysis. M.S. and J.S. conceived of and designed the algorithms
and benchmarks and wrote the manuscript.

[1] E. Afshinnekoo, C. Meydan, S. Chowdhury, D. Jaroudi,
C. Boyer, N. Bernstein, J. M. Maritz, D. Reeves, J. Gandara,
S. Chhangawala, et al. Geospatial resolution of human and
bacterial diversity with city-scale metagenomics. Cell Systems,
1(1):72–87, 2015.

[2] S. F. Altschul, T. L. Madden, A. A. Schä↵er, J. Zhang,
Z. Zhang, W. Miller, and D. J. Lipman. Gapped BLAST and
PSI-BLAST: a new generation of protein database search pro-
grams. Nucleic Acids Res., 25(17):3389–3402, Sept. 1997.

[3] M. Arumugam, J. Raes, E. Pelletier, D. Le Paslier, T. Yamada,
D. R. Mende, G. R. Fernandes, J. Tap, T. Bruls, J.-M. Batto,
et al. Enterotypes of the human gut microbiome. Nature,
473(7346):174–180, 2011.

[4] B. Buchfink, C. Xie, and D. H. Huson. Fast and sensitive
protein alignment using diamond. Nat. Methods, 12(1):59–60,
2015.

[5] N. Desai, D. Antonopoulos, J. A. Gilbert, E. M. Glass, and
F. Meyer. From genomics to metagenomics. Curr. Opin.
Biotechnol., 23(1):72–76, 2012.

[6] R. C. Edgar. Search and clustering orders of magnitude faster
than BLAST. Bioinformatics, 26(19):2460–2461, Oct. 2010.

[7] M. Farrar. Striped Smith-Waterman speeds database searches
six times over other SIMD implementations. Bioinformatics,
23(2):156–161, Jan. 2007.

[8] E. A. Franzosa, T. Hsu, A. Sirota-Madi, A. Shafquat, G. Abu-
Ali, X. C. Morgan, and C. Huttenhower. Sequencing and be-
yond: integrating molecular’omics’ for microbial community
profiling. Nature Reviews Microbiology, 13(6):360–372, 2015.

[9] M. C. Frith, Y. Park, S. L. Sheetlin, and J. L. Spouge. The
whole alignment and nothing but the alignment: the problem of
spurious alignment flanks. Nucleic acids research, 36(18):5863–
5871, 2008.

[10] M. Hauser, M. Steinegger, and J. Söding. Mmseqs software
suite for fast and deep clustering and searching of large protein

sequence sets. Bioinformatics, 32(9):1323–1330, 2016.
[11] D. Haussler, S. J. O’Brien, O. A. Ryder, F. K. Barker,

M. Clamp, A. J. Crawford, R. Hanner, O. Hanotte, W. E.
Johnson, J. A. McGuire, et al. Genome 10k: a proposal to
obtain whole-genome sequence for 10 000 vertebrate species.
Journal of Heredity, 100(6):659–674, 2009.

[12] H. Hauswedell, J. Singer, and K. Reinert. Lambda: the
local aligner for massive biological data. Bioinformatics,
30(17):i349–i355, 2014.

[13] A. C. Howe, J. K. Jansson, S. A. Malfatti, S. G. Tringe, J. M.
Tiedje, and C. T. Brown. Tackling soil diversity with the as-
sembly of large, complex metagenomes. Proc. Natl. Acad. Sci.
U.S.A., 111(13):4904–4909, 2014.

[14] B. L. Hurwitz and M. B. Sullivan. The pacific ocean vi-
rome (pov): a marine viral metagenomic dataset and associ-
ated protein clusters for quantitative viral ecology. PLoS One,
8(2):e57355, 2013.

[15] L. J. Jensen, P. Julien, M. Kuhn, C. von Mering, J. Muller,
T. Doerks, and P. Bork. eggnog: automated construction and
annotation of orthologous groups of genes. Nucleic Acids Res.,
36(suppl 1):D250–D254, 2008.

[16] K. Karplus, C. Barrett, and R. Hughey. Hidden markov mod-
els for detecting remote protein homologies. Bioinformatics,
14(10):846–856, 1998.

[17] J. J. Kent. BLAT–the BLAST-like alignment tool. Genome
Res., 12(4):656–664, Apr. 2002.

[18] S. M. Kie lbasa, R. Wan, K. Sato, P. Horton, and M. C. Frith.
Adaptive seeds tame genomic sequence comparison. Genome
Res., 21(3):487–493, 2011.

[19] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia.
Scop: A structural classification of proteins database for the
investigation of sequences and structures. J. Mol. Biol.,
247(4):536 – 540, 1995.

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/079681doi: bioRxiv preprint first posted online Oct. 7, 2016;

http://dx.doi.org/10.1101/079681
http://creativecommons.org/licenses/by-nc-nd/4.0/

5

[20] M. Remmert, A. Biegert, A. Hauser, and J. Söding. HHblits:
lightning-fast iterative protein sequence searching by HMM-
HMM alignment. Nature Methods, 9(2):173–175, Feb. 2012.

[21] T. Rognes. Faster Smith-Waterman database searches with
inter-sequence SIMD parallelisation. BMC Bioinformatics,
12(1):221+, June 2011.

[22] M. B. Scholz, C.-C. Lo, and P. S. Chain. Next generation
sequencing and bioinformatic bottlenecks: the current state of
metagenomic data analysis. Curr. Opin. Biotechnol., 23(1):9–
15, 2012.

[23] S. A. Shiryev, J. S. Papadopoulos, A. A. Schä↵er, and R. Agar-
wala. Improved blast searches using longer words for protein
seeding. Bioinformatics, 23(21):2949–2951, 2007.

[24] J. Söding and M. Remmert. Protein sequence comparison and
fold recognition: progress and good-practice benchmarking.
Curr. Opin. Struct. Biol., 21(3):404–411, 2011.

[25] S. Sunagawa, L. P. Coelho, S. Cha↵ron, J. R. Kultima,
K. Labadie, G. Salazar, B. Djahanschiri, G. Zeller, D. R.
Mende, A. Alberti, et al. Structure and function of the global
ocean microbiome. Science, 348(6237):1261359–1–9, 2015.

[26] J. Tan, D. Kuchibhatla, F. L. Sirota, W. A. Sherman, T. Gat-
termayer, C. Y. Kwoh, F. Eisenhaber, G. Schneider, and S. M.
Stroh. Tachyon search speeds up retrieval of similar sequences
by several orders of magnitude. Bioinformatics, 28(12):1645–
1646, June 2012.

[27] W. Tang, J. Bischof, N. Desai, K. Mahadik, W. Gerlach,
T. Harrison, A. Wilke, and F. Meyer. Workload characteri-
zation for mg-rast metagenomic data analytics service in the
cloud. In IEEE International Conference on Big Data, pages
56–63. IEEE, 2014.

[28] R. Vaser, D. Pavlović, M. Korpar, and M. Šikić. Sword-a highly
e�cient protein database search. Bioinformatics, 32(17):i680–
i684, 2016.

[29] M. Zhao, W.-P. Lee, E. P. Garrison, and G. T. Marth. Ssw
library: An simd smith-waterman c/c++ library for use in
genomic applications. PLoS One, 8(12), 12 2013.

[30] Y. Zhao, H. Tang, and Y. Ye. RAPSearch2: a fast and memory-
e�cient protein similarity search tool for next-generation se-
quencing data. Bioinformatics, 28(1):125–126, Jan. 2012.

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/079681doi: bioRxiv preprint first posted online Oct. 7, 2016;

http://dx.doi.org/10.1101/079681
http://creativecommons.org/licenses/by-nc-nd/4.0/

1

ONLINE METHODS

Overview MMseqs2 (Many-against-Many sequence
searching) is a software suite to search and cluster huge
sequence sets. MMseqs2 is open source GPL-licensed software
implemented in C++ for Linux and Mac OS. The software is5

designed run on multiple cores and servers and exhibits very
good scalability. It makes extensive use of single instruction
multiple data (SIMD) vector units which are part of modern
Intel and AMD CPUs. For older CPUs without AVX2 sup-
port, MMseqs2 falls back to SSE4.1 instructions throughout10

with minimal speed loss.
At the core of MMseqs2 is its sequence search module. It

searches and aligns a set of query sequences against a set
of target sequences. Queries are processed in three consecu-
tive stages of increasing sensitivity and decreasing speed (Fig.15

1A): (1) the fast k-mer match stage filters out 99.9 % of se-
quences, (2) the ungapped alignment stage filters out a further
99 %, and (3) the accurate, vectorized Smith-Waterman align-
ment thus only needs to align ≥ 10≠5 of the target sequences.

k-mer match stage. Since the k-mer match stage needs20

to work on all sequences, it needs to be much faster than the
subsequent stages. Its sensitivity is therefore crucial for the
overall search sensitivity.

The k-mer match stage detects consecutive, similar-k-mer
matches occurring on the same diagonal i ≠ j. i is posi-25

tion of the k-mer in the query and j is the position of the
matching k-mer in the target sequence. This criterion very
e�ectively suppresses chance k-mer matches between nonho-
mologous sequences as these have a probability of only ≥
1/(L

query

+ L
target

) to have coinciding diagonals.30

Query sequences are searched one by one against the target
set (Fig. 1B, loop 1). For each k-mer starting position in the
query (loop 2) we generate a list of all similar k-mers (orange
frame) with a Blosum62 similarity above a threshold score.
This threshold score (option –k-score <int>‘) determines the35

average number of similar k-mers and thereby the trade-o�
between sensitivity and speed. The similar k-mers are gen-
erated with a linear-time branch-and-bound algorithm[3] that
has been further accelerated in MMseqs2 using AVX2 vector
instructions.40

For each k-mer in the list of similar k-mers (loop 3) we obtain
from the index table (blue frame) the list of target sequence
identifiers target_ID and positions j where this k-mer occurs
(green frame). In the innermost loop 4 we go through this list
to detect double k-mer matches by comparing the current diag-45

onal i≠j with the previously matched diagonal for target_ID.
If the previous and current diagonals agree, we store the diag-
onal i≠j and target_ID as double match. Below, we describe
how this computation can be carried out within low-level, fast
CPU cache without random memory access in the innermost50

loop.
Minimizing random memory access. Due to the in-

crease in the number of cores per CPU and the stagnation in
main memory speeds in the last decade, main memory access
has become the main bottleneck for many compute-intensive55

applications. Since it is shared between cores, it also severely
impairs scalability with the number of cores. It is therefore

paramount to minimize random memory accesses.
We want to avoid the random main memory access to read

and update the value of diagonal_prev[target_ID] in the60

innermost loop. We therefore merely write target_ID and
the diagonal i≠ j serially into an array matches for later pro-
cessing. Because we write linearly into memory and not at
random locations, these writes are automatically bu�ered in
low-level cache by the CPU and written to main memory in65

batches with minimal latency. After the end of loop 2, the
matches array is processed in two steps to find double k-mer
matches. In the first step, the entries (target_ID, i≠ j) of
matches are sorted into 2B arrays (bins) according to the low-
est B bits of target_ID, just as in radix sort. Reading from70

matches is linear in memory, and writing to the 2B bins is
again automatically bu�ered by the CPU. In the second step,
the 2B bins are processed one by one. For each k-mer match
(target_ID, i≠j), we run the code in the magenta frame of
Fig. 1B. But now, the diagonal_prev array fits into L1/L275

CPU cache, because it only needs ≥ N/2B entries, where N
is the number of target database sequences. To minimize the
memory footprint, we store only the lowest 8 bits of each diag-
onal value in diagonal_prev, reducing the amount of memory
to ≥N/2B bytes. For example, in the 256 KB L2 cache of Intel80

Haswell CPUs we can process a database of up to 256K ◊ 2B

sequences. To match L2 cache size to the database size, MM-
seqs2 sets B = ceil(log2(N/L2_size)).

Index table generation. For the k-mer match stage we
preprocess the target database into an index table. An array85

with 21k entries contains for each of the 21k k-mers a pointer
to the list with entries ‘(target_ID, j) where the k-mer occurs
(blue frame in Fig. 1B). Prior to index generation regions of
low amino acid compositional complexity are masked out. (see
Masking low-complexity regions). Building the index table file90

for 5 ◊ 107 sequences takes about 45 minutes on a single core.
We are working to accelerate this.

Memory requirements The index table needs 4+2 bytes
for each entry (target_ID, j), and one byte per residue is
needed to store the target sequences. For a database of NL95

residues, we therefore require NL ◊ 7 B. The pointer array of
the index label needs another 21k ◊ 8 B. The target database
set can be split into arbitrary chunk sizes to fit them into
memory (see Parallelization).

Ungapped alignment stage. A fast, vectorized algo-100

rithm computes the scores of optimal ungapped alignments on
the diagonals with double k-mer matches. Since it has a linear
time complexity, it is much faster than the Smith-Waterman
alignment stage with its quadratic time complexity. The algo-
rithm aligns 32 target sequences in parallel, using the AVX2105

vector units of the CPU. To only access memory linearly we
precompute for each query sequence a matrix with 32 scores
per query residue, containing the 20 amino acid substitution
scores for the query residue, a score of ≠1 for the letter X (any
residue), and 11 zero scores for padding. We gather bundles110

of 32 target sequences with matches on the same diagonal and
also preprocess them for fast access: We write the amino acids
of position j of the 32 sequences consecutively into block j of 32
bytes, the longest sequence defining the number of blocks. The
algorithm moves along the diagonals and iteratively computes115

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/079681doi: bioRxiv preprint first posted online Oct. 7, 2016;

http://dx.doi.org/10.1101/079681
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

the 32 scores of the best alignment ending at query position
i in AVX2 register S using S = max(0, S

match

+ S
prev

). The
substitution scores of the 32 sequences at the current query po-
sition i in AVX2 register S

match

are obtained using the AVX2
(V)PSHUFB instruction, which extracts from the query pro-120

file at position i the entries specified by the 32 bytes in block j
of the target sequences. The maximum scores along the 32 di-
agonals are updated using S

max

= max(S
max

, S). We subtract
from S

max

the log
2

of the length of the diagonal. Alignments
above 15 bits are passed on to the next stage.125

Vectorized Smith-Waterman alignment stage. We
extended the alignment library of Mengyao et al. [10], which
is based on Michael Farrar’s stripe-vectorized alignment algo-
rithm [2], by adding support for AVX2 instructions and for se-
quence profiles. To save time when filtering matches, we only130

need to compute the score and not the full alignment. We
therefore implemented versions that compute only the score
and the end position of the alignment, or only start and end
position and score.

Amino acid local compositional bias correction.135

Many regions in proteins, in particular those not forming a
stable structure, have a biased amino acid composition that
di�ers considerably from the database average. These regions
can produce many spurious k-mer matches and high-scoring
alignments with non-homologous sequences of similarly biased140

amino acid distribution. Therefore, in all three search stages
we apply a correction to substitution matrix scores developed
for MMseqs[4], assigning lower scores to the matches of amino
acids that are overrepresented in the local sequence neighbor-
hood. Query sequence profile scores are corrected in a simi-145

lar way: The score S(i, aa) for amino acid aa at position i is
corrected to S

corr

(i, aa) = S(i, aa) ≠ 1

40

qi+20

j=i≠20,j ”=i S(j, aa) +
1

Lquery

qLquery
j=1

S(j, aa).
Masking low-complexity regions. The query-based

amino acid local compositional bias correction proved e�ec-150

tive, particularly for sequence sequence searches. However, for
iterative profile sequence searches a very low level of false dis-
covery rate is required, as false positive sequences can recruit
more false positives in subsequent iterations leading to mas-
sively corrupted profiles and search results in these instances.155

We observed that these cases were mainly caused by biased
and low-complexity regions in the target sequences. We there-
fore mask out low-complexity regions in the target sequences
during the k-mer matching and the ungapped alignment stage.
Regions satisfying one of the following criteria are masked out:160

(1) all 6-mers are under a bit score of 8.75 after amino acid
local composition bias correction, (2) four consecutive iden-
tical residues, (3) four consecutive 2-mers with at most one
mismatch between them, (4) four consecutive 3-mers at most
two mismatches. Using GPLv2-licensed code from pfilt[7] and165

default parameters, we also mask (5) coiled coils and (6) all
windows of size 12 that contain only three distinct amino acids.

Parallelization Due to the stagnation in CPU clock rates
and the increase in the number of cores per CPU, vectoriza-
tion and parallelisation across multiple cores and servers is of170

growing importance for highly compute-intensive applications.
Besides careful vectorization of time-critical loops, MMseqs2

is e�ciently parallelized to run on multiple cores and servers
using OpenMP and message passing interface (MPI).

(1) OpenMP threads search query sequences independently175

against the target database and write their result into separate
files. After all queries are processed, the master thread merges
all results together.

(2) To parallelize the time-consuming k-mer matching and
gapless alignment stages among multiple servers, two di�erent180

modes are available. In the first, MMseqs2 can split the target
sequence set into approximately equal-sized chunks, and each
server searches all queries against its chunk. Alternatively, the
query sequence set is split into equal-sized chunks and each
server searches its query chunk against the entire target set.185

Splitting the target database is less time-e�cient due to the
slow, IO-limited merging of results. But it reduces the mem-
ory required on each server to 7 ◊ NL/#chunks + 21k ◊ 8 B
and allows users to search through huge databases on servers
with moderate memory sizes. If the number of chunks is larger190

than the number of servers, chunks will be distributed among
servers and processed sequentially. By default, MMseqs2 au-
tomatically decides which mode to pick based on the available
memory on the master server.

MMseqs2 software suite The MMseqs2 suite consists195

of four simple-to-use main tools for standard searching and
clustering tasks, 37 utility tools, and four core tools ("ex-
pert tools"). The core tool mmseqs prefilter runs the first
two search stages in Fig. 1A, mmseqs align runs the Smith-
Waterman alignment stage, and mmseqs clust o�ers various200

clustering algorithms. The utilities comprise tools for format
conversion, multiple sequence alignment, sequence profile cal-
culation, ORF extraction, 6-frame translation, set operations
on sequence sets and results, regex-based filters, and statis-
tics tools to analyse results. The main tools are implemented205

as bash-scripted workflows that chain together core tools and
utilities, to facilitate their modification and extension and the
creating of new workflows by users.

Design of sensitivity benchmark Some recent new se-
quence search tools were only benchmarked against short se-210

quences, using BLAST results as the gold standard [1, 5, 11?
]. Short matches require fairly high sequence identities to
become statistically significant, making BLAST matches of
length 50 almost trivial to detect even for quite insensitive
tools. (For a sequence match to achieve an E≠value < 0.01215

in a search through UniProt requires a raw score of 40 bits,
which on 50 aligned residues translates to a sequence iden-
tity & 40%.) Because long-read, third-generation sequencing
technologies are becoming widespread, short-read technologies
are improving read lengths, and ORFs and putative genes in220

metagenomics are commonly predicted from assembled con-
tigs, we constructed a benchmark set using full-length queries
and database sequences, including their disordered regions,
membrane helices, and other low-complexity regions. Includ-
ing such regions is important since they often give rise to false-225

positive sequence matches, particularly in iterative sequence
searches.

Because we cannot use BLAST or SWIPE as gold standard
if we want to compare other tools with them, we use evolu-
tionary relationships that have been determined on the basis230

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/079681doi: bioRxiv preprint first posted online Oct. 7, 2016;

http://dx.doi.org/10.1101/079681
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

of structures as gold standard. SCOP [8] is a database of
protein domains of known structure organised by evolutionary
relationships. Domains in the same superfamily are homol-
ogous and are counted as true positives in our benchmark,
whereas domains in di�erent folds except beta propellers can235

be assumed to be non-homologous and are counted as false
positives [9]. All other pairs are ignored.

We measure the sensitivity of search tools using a receiver
operating characteristic (ROC) analysis [9]. We search with
a large set of query sequences through a database set (see240

next paragraph) and record for each query the fraction of true
positive sequences detected up to the first false positive. This
sensitivity is also called area under the curve 1 (AUC1). We
then plot the cumulative distribution of AUC1 values, that is,
the fraction of query sequences with an AUC1 value larger than245

the value on the x-axis. The more sensitive a search tools is
the higher will its cumulative distribution trace lie. We chose
not to analyse only the best match for each search to increase
the number of matches and to thereby reduce statistical noise.

Benchmark set The SCOP/ASTRAL (v. 1.75) database250

was filtered to 25% maximum pairwise sequence identity (7616
sequences), and we searched with each SCOP sequence through
the UniRef50 (06/2015) database, using SWIPE and, for max-
imum sensitivity, also three iterations of HHblits. To construct
the query set, we chose for each of the 7616 SCOP sequences255

the best matching UniRef50 sequence for the query set if its
SWIPE E-value was below 10≠5, resulting in 6370 query se-
quences with 7598 SCOP-annotated domains. Outside of an-
notated regions, amino acids were shu�ed randomly within
overlapping windows of size 10. This preserves the local amino260

acid composition while precluding true positive matches in the
shu�ed regions.

To construct the target database, we selected all UniRef50
sequences with SWIPE or HHblits E≠value < 10≠5 and an-
notated them with the corresponding SCOP family, resulting265

in 3 374 007 annotations and a median and average number of
sequences per SCOP family of 353 and 2150, respectively. As
for query sequences, unannotated regions were shu�ed locally.
Since the speed measurements are only relevant and quanti-
tative on a database of realistic size, we added the 27 056 274270

reversed sequences from a 2012 UniProt release. Again, the re-
version preserves the local amino acid composition while ruling
out true positive matches [6].

Benchmarking We evaluated results up to the 4000’th
match per query (ranked by E-value) and, for tools with an275

upper limit on the number of reported matches, set this limit
via command line option to 4000. The maximum E-value was
set to 10, 000 to detect at least one false positive and to avoid
biases due to slightly di�erent E-value calculations. Program
versions and calls are found in the Supplemental Table S2.280

All benchmarks were run on a single server with two In-
tel Xeon E5-2640v3 CPUs (2 ◊ 8 cores, 2.6 GHz) and 128GB
memory. Run times were measured using the Linux time com-
mand, with the target database (70 GB, 30.4 M sequences) on
local solid state drives and with a 100-fold duplicated query set285

(637 000 sequences). For the slowest tools, SWIPE, BLAST
and RAPsearch2, we scaled up the runtime for the original
query dataset 100-fold.

Data availability Parameters and scripts for bench-
marking are deposited at https://bitbucket.org/martin_290

steinegger/mmseqs-benchmark.
Code availability The source code and binaries of the

MMseqs2 software suite can be download at https://github.

com/soedinglab/mmseqs2.

[1] B. Buchfink, C. Xie, and D. H. Huson. Fast and sensitive
protein alignment using diamond. Nat. Methods, 12(1):59–60,
2015.

[2] M. Farrar. Striped Smith-Waterman speeds database searches
six times over other SIMD implementations. Bioinformatics,
23(2):156–161, Jan. 2007.

[3] M. Hauser, C. E. Mayer, and J. Söding. kclust: fast and sensi-
tive clustering of large protein sequence databases. BMC Bioin-
formatics, 14(1):1–12, 2013.

[4] M. Hauser, M. Steinegger, and J. Söding. Mmseqs software
suite for fast and deep clustering and searching of large protein
sequence sets. Bioinformatics, 32(9):1323–1330, 2016.

[5] H. Hauswedell, J. Singer, and K. Reinert. Lambda: the
local aligner for massive biological data. Bioinformatics,
30(17):i349–i355, 2014.

[6] K. Karplus, C. Barrett, and R. Hughey. Hidden markov mod-
els for detecting remote protein homologies. Bioinformatics,

14(10):846–856, 1998.
[7] L. J. McGu�n, K. Bryson, and D. T. Jones. The psipred

protein structure prediction server. Bioinformatics, 16(4):404–
405, 2000.

[8] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia.
Scop: A structural classification of proteins database for the
investigation of sequences and structures. J. Mol. Biol.,
247(4):536 – 540, 1995.

[9] J. Söding and M. Remmert. Protein sequence comparison and
fold recognition: progress and good-practice benchmarking.
Curr. Opin. Struct. Biol., 21(3):404–411, 2011.

[10] M. Zhao, W.-P. Lee, E. P. Garrison, and G. T. Marth. Ssw
library: An simd smith-waterman c/c++ library for use in
genomic applications. PLoS One, 8(12), 12 2013.

[11] Y. Zhao, H. Tang, and Y. Ye. RAPSearch2: a fast and memory-
e�cient protein similarity search tool for next-generation se-
quencing data. Bioinformatics, 28(1):125–126, Jan. 2012.

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/079681doi: bioRxiv preprint first posted online Oct. 7, 2016;

http://dx.doi.org/10.1101/079681
http://creativecommons.org/licenses/by-nc-nd/4.0/

